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In this paper we present a new formulation of the artificial viscosity concept.
Physical arguments for the origins of this term are given and a set of criteria that
any proper functional form of the artificial viscosity should satisfy is enumerated.
The first important property is that by definition a viscosity must always be dissipa-
tive, transferring kinetic energy into internal energy, and must never act as a false
pressure. The artificial viscous force should be Galilean invariant and vary conti-
nuously as a function of the criterion used to determine compression and expansion,
and remain zero for the latter case. These requirements significantly constrain the
functional form that the artificial viscous force can have. In addition, an artificial
viscosity should be able to distinguish between shock-wave and adiabatic compres-
sion, and not result in spurious entropy production when only the latter is present.
It must therefore turn off completely for self-similiar motion, where only a uni-
form stretching and/or a rigid rotation occurs. An additional important, but more
subtle, condition where the artificial viscosity should produce no effect is along the
direction tangential to a convergent shock front, since the velocity is only discon-
tinuous in the normal direction. Our principal result is the development of a new
formulation of an edge-centered artificial viscosity that is to be used in conjunction
with a staggered spatial placement of variables that meets all of these standards, and
without the need for problem dependent numerical coefficients that have in the past
made the artificial viscosity method appear somewhat arbitrary. Our formulation and
numerical results are given with respect to two spatial dimensions but all of our argu-
ments carry over directly to three dimensions. A central feature of our development
is the implementation of simple advection limiters in a straightforward manner in
more than one dimension to turn off the artificial viscosity for the above mentioned
conditions, and to substantially reduce its effect when strong velocity gradients are
absent. (© 1998 Academic Press
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1. INTRODUCTION

The addition of a fictitious term, the artificial viscosity, into the invisid Euler equatio
of fluid dynamics in order to automatically “capture” shock wave discontinuities in a fiL
is perhaps the oldest numerical device in the relatively new field of computational phy
and mechanics [1]. However, in the nearly half century since this idea was introdu
it remains just a convenient and somewhat ad hoc numerical technique. Many diffe
functional forms for the artificial viscosity have been proposed. These contain prob
sensitive parameters that are often set in a somewhat arbitrary manner.

The purpose of this work is to remove as many of these arbitrary parameters and ch
as possible and to define and delineate the issues critical to a successful form of arti
viscosity. We are interested in staggered spatial grid formulations in more than one dir
sion; in these schemes position and velocity are defined at the grid points or nodes
all other variables, such as density and internal energy, are defined inside the zones \
boundaries are given by straight lines connecting the points. The new artificial viscc
presented in this paper is meant to be used with this kind of spatial differencing. Howev
set of criteria that should be satisfied by any artificial viscosity is enumerated. These cri
provide relevant standards for evaluating these formulations.

The most basic property that an artificial viscosity must satisfy is dissipativity. Thatis, 1
term must always convert kinetic energy into internal energy and never the other way arc
In more than one dimension this is a nontrivial requirement. Thisis herein addressed in t
of the new framework of “compatible formulations” of discrete systems of equations |
After this a number of additional properties that any successful artificial viscosity sho
have are considered. First, it must vanish for uniform compression and rigid rotatiol
should also vanish along a surface of constant phase. Along such a surface the velocity
has a constant magnitude, andis also continuous, but may vary in direction. The directiol
is tangential to the direction of propagation of a shock front is an example of this situat
This important property has been missed by many authors, but not by Schulz [3], and
paramount importance for the accurate treatment of convergent flow problems. Final
useful artificial viscosity should produce forces that go to zero continuously as compres
goes to zero and remain zero for expansion, so that the latter is a reversible process. F
definitions of compression and expansion must be given in the multi-dimensional con
This is the task that this paper addresses. In pursuing it we will draw on a long histor
past work and generalize some new ideas to more than one dimension.

This paper is organized as follows: In Section 2 the fundamental ideas and princi
underlying the artificial viscosity method are introduced. This is done along the lines
previous work by requiring that the shock conditions be satisfied, and using an ana
with the completely inelastic collision of particle masses. After this the problem of a pro
one-dimensional artificial viscosity is explored. The difficulty in constructing an artifici
viscosity that vanishes for uniform compression is discussed, and the two different solu
to this problem that have been utilized are presented: One is the use of a tensor forn
resembles the physical viscosity of a fluid; the other is the limiter formulation of Christian:
[4, 5]. Section 4 presents the main focus of our work. The concepts of an edge vers
zone centered artificial viscosity are introduced along with the differencing scheme th
employed to compute both the viscous forces and the work done by them. We pres
general set of conditions that any functional form of the artificial viscosity should satis
the manner in which dissipativity is ensured is explained. The generalization of sin
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advection limiters to a multi-dimensional framework for use with an artificial viscosity
given. Itis shown how these act to turn off the artificial viscosity when physically necess
Next, an edge-centered viscosity is formulated and analyzed with respect to our sf
criteria and contrasted to the previous work of Schulz [3]. Finally, zone-centered artifi
viscosities are briefly considered,; it is shown that some misconceptions have arisen
regard to this form. Numerical results are presented in Section 5 that are meant to ¢
the dependencies of our artificial viscosity on the parameter constants and on the lirr
for both convergent and divergent shock wave problems. Other difficulties with the us
an artificial viscosity are detailed, and our conclusions are discussed. Last, an appen
included that summarizes our recommended form of artificial viscosity in a succinct mar
that is easy to code.

2. FUNDAMENTALS

The original formulation of the artificial viscosity introduced by VonNeumann ar
Richtmyer [1] involved adding a term to the momentum equation that essentially a
ments the scalar pressure in the instance where there is shock compression. This ter
postulated, but constrained, by the requirements that solutions to the new system conte
it satisfy the shock jump conditions and have a negligible effect outside the shock layer.
shock width so obtained is always the order of the finest grid spacing and has no phy
scale, a fact that leads to the inherent difficulties and limitations associated with this met

Consider a staggered grid in one-dimension where the density, pressure, and sp
internal energy are defined in zones delineated by grid points where the coordinate pos
and velocity are specified. |§ is the density of a zone across which the velocity has
differenceAv, then this term, denoted gg, is given by the nonlinear expression

Onl = C20(AV)2, 1)

wherec; is a constant of order unity. Now the zone presspyeis augmented everywhere
in the Euler equations bg, . These together act to prevent zone collapse in a time st
At that is determined by the usual CFL stability conditajit/Ax < 1, whereAx is the
zone width andt} is a generalized sound speed in the zone based on the effective :
pressurep; + On. The termgy is dissipative if we require that it be nonzero only for
zone compression; it then only converts kinetic energy, defined at the points or nodes
zone internal energy. It thus acts as a viscosity.

The origin of Eq. (1) can be seen simply by considering the completely inelastic collis
of two massesVl; and M,. Then, although momentum is conserved, the decrease in
kinetic energy after the collision ig(Av)?/2, whereu is the reduced mass ansl is
the difference in the velocities of the two masses before the collision occurred. Thus
functional form of the nonlinear artificial viscosity is that of the specific kinetic ener
available for transfer to internal energy in a completely inelastic collision of two mass
where the density plays the role of the reduced mass. It is for this reason that the nonl
artificial viscosity of Eq. (1) results in the same amount of zone compression indepen
of shock strength. If automatically contains the correct amount of kinetic energy to
dissipated. Although other forms of artificial viscosity that depend\erto some power
and have the dimensions of a pressure can be constructed, only the one given by Eq. (
this important property.
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While the above form was found adequate to capture strong shocks, and does pr
zone inversion, unphysical oscillations were observed to occur behind the shock fror
order to eliminate these Landshoff [6] proposed that an additional term that vanishes
rapidly than Eq. (1) as one moves into the shocked material be added to the nonlinear
This is given by

Qin = C1pCs| AV, 2

wherec; is the usual zone sound speed based only on the zone pressgigssadonstant.
This viscosity term was often found to produce too much spreading of the physical solu
about a shock front. For this reason, and until very recently, the facteas usually set an
order of magnitude smaller thap.

We now have what will be referred to as the generic form of artificial viscosity. This
simply given by the addition of the linear and nonlinear terms as

Ogen = C10Cs| AV| + C2p(AV)Z. 3)

Many formulations of artificial viscosity in more than one dimension use the form given
Eq. (3) with minor modifications. Usually these entail endowing it with directional propert
of some sort and/or redefiningv as the produdtV - v*, wherel; is some effective length
through a zone or distance along the edge of a zoneVand* is the divergence of the
velocity field with respect to some specified direction [7]. In one dimension and in s
geometry this reduces v and the form given by Eqg. (3).

Our previous analogy of an artificial viscosity modelled on the inelastic collision betwe
discrete particle masses that have a finite size can be carried further. Loosely followin
work of Favorskiiet al. [8, 9], consider an inelastic collision between a piece of ma
8M; that is a part of a madsl;, with a piece of mas&M, that is part of a mashl,. Let
these masses be infinitesimal in size and assume that they form a virtual particle of |
(6§M1 + §My). Then if the velocities of the masses before this collisionvarandv,, we
have from conservation of momentum that the velocity of the virtual pasticie given by

(M1 + SMo)V* = §Myvy + §Mov,. (4)

Now suppose that this virtual particle instantaneously splits apart with its respective r
component$ M; and§M,, now with common velocity*, recolliding with their original

parent masseg; —§M; andM; —§ My, each with their unchanged initial velocities. The ne
result of this two step process is that mdsundergoes a change of momentum given b

SM16M;

My(Vif — V) = ——— =
1(Vet 1) M, 1 5Ny

(V2 — V1), (5)
wherev;¢ is the final velocity ofM;. An analogous equation holds fo1, where the
momentum transfer has the same magnitude as that given by Eq. (5) but, of course,
opposite sign. Now if we assume tlédil, = §M, = pV1, whereV is a generalized interac-
tion velocity whose explicit form may vary somewhat anig an interaction time, then the
RHS of Eq. (5) becomesV (v, — vi) /2. If we next specify thal’ = |v; — v,| and that the
time r has the differential sizét, then the RHS of Eq. (5) becomes (Av)3,dt/2, from
which the familiar form of the effective nonlinear viscous pressefav)? is apparent.
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(Here we have assumed thabr |v; — vy| Sweeps out a unit area.) In the one-dimension:
case where the mad4; lies to the right ofM;, and where there is in addition a madds
that lies to the left oM; with velocity vg, then Eq. (5) also contains a term associated wit
the interaction oM; with massMg. Thus in the one-dimensional case the form of Eq. (&
becomes

dv
Mld_tl = [—p(v1 — v2)* + p(vo — v1)?] /2. (6)
If we now setM; = pAx, whereAx is the width of particle mask,, then Eq. (6) is just
the spatially discretized form of the artificial viscosity part of the one-dimensional vers
of the vector force equation

p? =-V(p+0a), Q)
t

whereq = p(Av)?/2 is the nonlinear artificial viscosity with coefficiect=1/2, andp is
the usual scalar pressure.

As previously mentioned, the mass interaction tai@somewhat arbitrary. If we estimate
that two masses overlap at the rétd, = §M; = pcs dt then the RHS of Eq. (5) becomes
pCsAVp; dt/2 and the linear artificial viscous pressure term is obtained. It is therefore s
that one can introduce any combination of linear and nonlinear artificial viscosity in t
manner simply by the choice of the generalized velotitthat determines the inelastic
collision rate of adjacent masses. Note from this model that the artificial viscosity t
acts between any two masses should be turned off when their valve 10, since then
these masses are not colliding. This has been the principle practiced for a long time, w
the definition of “interaction” is extended to discrete grid models of continuum fluids
compression of a zone or part of a zone [10].

It was seen in one dimension that the differencing of the gradient operator resu
automatically from the consideration of the interaction of mdsgsvith its nearest neighbors
to the left and right. In more than one dimension what is a nearest neighbor is no
straightforward. In two dimensions using a logically rectangular, staggered, quadrilat
grid there are four nearest neighbors if one considers as a neighbor only the points th
adjacent to a given point along the logical lines. This gives rise to a five point interact
that loosely resembles the five-point differencing used for discretization of the Laplac
on smooth grids. In the case where one also considers the points that lie diagonally opy
to a given point to also interact one arrives at a nine-point interaction stencil that is r
generally used to difference the Laplacian with respect to non-orthogonal quadrilat
grids. Although the edge-centered artificial viscosity developed here cannot be writte
the difference form of the continuum Laplacian, this viscosity uses as nearest neigh
only those points that lie along logical lines, with analogy to the five point stencil. Diago
interactions are not necessarily excluded in principle; however, in this work we have L
unable to include these interactions in any generally effective manner that does not det
the overall quality of the results otherwise obtained.

The major difficulty with the interpretation of the artificial viscosity term as originatin
from the continuous and differential, inelastic collision of finite volume masses is that we
not dealing with distinct particle masses, but with a continuous fluid that is divided into no
or point “particles” in a prescribed but somewhat arbitrary manner. If one now proceed
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use onlyAv < 0 between two nodal points to switch on an artificial viscosity, as one wol
deduce from the above model, one can easily produce erroneous results. For exampl
can have the situation of a self-similar, isentropic compression and the above particle
produces irreversible viscous dissipation. This is the essential problem that all artif
viscosity formulations have stumbled over, and which the higher-order Godunov mett
[11] are automatically able to overcome. A principal result of this paper is to extend
work of Christiansen [4, 5], which was based on the approximate Riemann solver devel
by Dukowicz [12], to the multi-dimensional case for any kind of grid topology. This ad
additional restrictions on the strength of the artificial viscous forces such that isentr
compression problems can be solved without unphysical viscous dissipation.

The difficulty with just using the Godunov methods themselves is that one must re
to operator splitting in more than one dimension to solve the associated Riemann prot
This becomes more complicated as more physics (tabulated equations of state, me
strength, MHD, etc.) is included in any given model. Artificial viscosity methods are inh
ently simpler in that the level of numerical complexity does not increase as the numbe
dimensions and/or the amount of physics included increases.

Finally, we wish to note the following form for the artificial viscosity that is given in th
paper by Wilkins [7], but was first presented by Kuropatenko [13]. This is

r+1 +1)\?
Our = P 4 C2 ”4 |Av|+\/c%(y4) (AV)2 +¢fcZ ¢ |Av]. (8)

We refer to this as the Kuropatenko form of the artificial viscosity and lalogl,if note that
the mass interaction raieis given by the term inside the curly brackets. In this expressit
AV is the velocity jump across a zoneandcs are the density and speed of sound in thi
zone (in the Appendix this is somewhat modified)js the ratio of specific heats of the
material;c; andc, are constants that multiply the linear and nonlinear artificial viscosi
terms, respectively; these are generally set to unity. It is easily seen that Eq. (8) reduc
the linear and nonlinear forms of the artificial viscositydas— 0 andcs — 0, respectively.
The above expression is a uniformly valid match to both the linear and nonlinear form
artificial viscosity as one moves away from the shock front. For this reason it is the b
of the artificial viscosity formulated here.

The origin of the above expression comes from determining the form of the term
must be added to the pressure in front of a steady-state shock in order to achieve the pre
behind the shock, using the jump conditions and, in addition, an ideal gamma-law equi
of state. The solution is Eq. (8) where the constants ¢, = 1. In this instance andcs
are the density and sound speed ahead of the shoclgaigithe velocity jump across it.

3. ARTIFICIAL VISCOSITY—ONE-DIMENSION

In one spatial dimension the artificial viscosity forms already given by either Eq.
or Eq. (8) are nearly sufficient. The only real difficulty with these expressions is that
uniform compression they do not vanish. This is the problem mentioned earlier with res
to the inelastic collision model of artificial viscosity. We must be able to determine wt
nodal masses could be arbitrarily redivided into finite size particles with the same aver
and thus nodal, velocity as is true for the case of uniform compression, and turn off
artificial viscosity when this occurs.
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The most common solution to this problem is to model the artificial viscosity mc
closely on physical viscosity, which does vanish for uniform compression. To achieve
one redefines a single factor &k in the artificial viscosity as the produgtQ;;, wherel, is
the length across a zone a@g is the symmetric strain rate tensor in traceless form. Wit
the generic form of the artificial viscosity, as given by Eq. (3), this becomes

Gij = p(C1Cs + C2|AV) I:Qjj,

1
Qij =€« —§5ijV-V, )

o — 1 / Ov; n ovj
S 2 8Xj 9% ’

wheree;; is the symmetric strain rate tensor afidis the kronecker delta function [14];
also,qjj =0 if Av>0 across the zone. The tensQr; was derived by requiring that it
vanish for rigid rotation and uniform compression [15]. The rest of Eq. (9) is now jus
nonlinear, grid dependent form of a coefficient of dynamic viscosity. Although the artific
viscosity is now directional, in one-dimension this has a very simple form. For spheri
coordinategR, 6, ¢) where the angles are ignorable so that (v(R), 0, 0), Q;; becomes

5 g—; - R 0 0
o=(3)| o “k-w o | (1)
o 0 -ik-w

(Above and in other instances we sometimesssew(R), whereR is the radius vector to
the point wherer is defined. By this we indicate a specific functional dependence whe
R is always understood to be nondimensional arftas the proper velocity units.) For
uniform, self-similar compression= —R, and thusQ;; =0 as desired. Sinc®;; is a
proper tensor this property is preserved in all coordinate systems. The force produce
this artificial viscosity is given by g;; and the associated rate of dissipatioroQy. V;vi.
Similar modifications are the basis of most zone-centered forms of the artificial visco
in more than one dimension.

In implementing the form given as Eq. (9) difficulties may arise due to low-order diffe
encing of the terms that appear in the ten@qr. If two-point formulas are used to evaluate
these terms and one of these points is fixed in space, as is the case for a center of c
gence, therQ;; will always vanish in this zone. This is because a discretization using t
points is not accurate enough to measure the size of the second derivative of the vel
and always effectively assumes that it is zero. Higher order formulas should be use
difference these terms.

A more recent solution to the uniform compression problem is to retain the “primitiv
forms of the artificial viscosity, Eq. (3) or Eq. (8), and realize that what is wanted is to h:
them vanish when the velocity field is a linear function of the coordinates. Christian:
[4, 5] proposed using a TVD advection limiter [16] in one dimension to achieve this.

Consider a zone in one-dimension delineated by the points “1” and “2.” Suppose th
point labelled “0” lies to the left of “1,” and that a point labelled “3” lies to the right of “2,”
so that zones 10 and 32 lie to the left and right, respectively, of the center zone 21. -
the artificial viscosity present in this central zone @4, is postulated to be

021 = Okur,22(1 — ¥21) if Avyp <0, (11)
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and zero otherwise. The limitgr,; is given by
Vo1 = max[Q, min(.5(r, +r,), 2r;, 2r;, 1.)]. (12)

The quantities; andr, that enter the limiter function are given below as the ratios of t
discrete spatial derivative of the velocity field on the left and right intervals, respective
divided by this derivative in the central zone 21

A A A A
32 / v21 (= Ao / v21 (13)

| = ’ - .
AXzo AXo1 AXi10 AXoq

The limiter appears in Eq. (11) as a linear factor because what is limited is the n
interaction velocity) that always enters linearly, and not the velocity differepte| that
enters as a quadratic factor. The enormous advantage the limiters provide is that they a
turn the artificial viscosity off when the second derivative of the velocity field is local
zero without directly computing a second difference. Instead, ratios of first differences
used. At the boundaries of the domain where eitherr, is missing one can either set the
missing ratio to unity or to the other known member for use in Eq. (12). There is founc
be little sensitivity to such choices.

We use the expressi@p,r 21 in Eq. (11) to indicate that we mean the artificial viscosit:
form given by Eq. (8) with respect to the interval “21.” This is our recommended form o
one-dimensional artificial viscosity. In one dimension itis always a simple scalar in cont
to the tensor form of Egs. (9), (10).

4. ARTIFICIAL VISCOSITY—MULTI-DIMENSIONS

We generalize the ideas presented earlier to more than one dimension. Althoug!
discussion will be given in two dimensions, all of the results carry over directly to thi
dimensions. To help frame this discussion we enumerate the salient properties thata g
artificial viscosity should possess. This is done along the lines of the early work of Schulz

(1) Artificial viscosity must always act to decrease kinetic energy, that is, it must
dissipative (Dissipativity).

(2) Artificial viscosity should vanish uniformly (smoothly) as the velocity field be
comes constant (Galilean invariance).

(3) Artificial viscosity should vanish for a uniform contraction and/or a rigid rotatic
(Self-similar motion invariance).

(4) Artificial viscosity should have no effect along a wave front of constant pha
This is because the velocity component tangential to a shock front is continuous in the
of arbitrary grid refinement in this direction (Wave front invariance).

(5) The artificial viscous force should go to zero continuously as compression vanis
and expansion develops, and remain zero for the latter. Compression and expansion
be defined in some relevant context (Viscous force continuity).

Before we can judge the merits of a particular form of artificial viscosity we must first
certain that it is dissipative: that is, an artificial viscosity and not a false pressure term
can act to increase as well as decrease kinetic energy and thus give rise to wave motic
guarantee that an intended form of artificial viscosity is always dissipative is a nontri
point that says much about the functional form of the artificial viscosity itself. To ensure 1
we must examine the internal energy equation and how dissipation is achieved given fi
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4 1

FIG. 1. Quadrilateral zone: solid interior lines delineate traingular subzones; dotted lines form the me
mesh.

that are discretized via a control volume method along the median mesh. As a prereqt
for this development it is necessary to present the basics of the control volume differen
that is utilized.

4.1. Control Volume Differencing/Median Mesh Forces

In the general case where only a postulated form of the artificial viscosity is specifiec
need to answer two questions: First, given conservation of total energy, what is the for
the equation for internal energy with specified forces; and second, under what condit
do these forces result in positive-definite work? The first question can always be answ
This is given in the framework of what we call “compatible” or “mimetic” discretization ¢
the equations [2, 17]. We give enough background for our purposes but refer otherwi
the discussion of these themes in a broader context [2, 19]. We note, however, that i
compatible formulation of difference equations on a staggered spatial grid the force or
points and the work done with respect to the zones are composed of the same sub-pie
force; these are simply manipulated in different manners as is now illustrated.

To be explicit, consider Fig. 1 where a quadrilateral zone is shown that is subdividec
solid lines to form triangular subzones. The coordinates of the center point labelled as
are determined as the average of the coordinates of the points that form the quadrilatera
solid lines that compose the boundary of the quadrilateral form the “coordinate-line” me
The dotted lines that connect point “5” to the midpoints of each side of the quadrilateral
bisect each subtriangle form the “median” mesh. The vectors lab®lle@therel =1- - - 4,
are the normals to these lines with magnitudes that are equal to their areas. It is alon
median mesh that we will compute the forces that are due to the artificial viscosity,
thus we must explain how these forces and the work they produce are to be computed
respect to this mesh.

Suppose that there exists a tenQ;rof arbitrary origin that is piecewise constant inside
zones with logical index. Then using control volume differencing the momentum equatic
at any pointp can be written as

dvp
Myge = Q-as a4)
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where on the LH9M,, is the mass, and,, is the velocity, of the poinp. The force on the
RHS of Eq. (14) is evaluated along the closed contguof the median mesh about point
p, and obtains two piecewise constant contributions from each zone adjacent to this
We are next concerned with the exact specification of these force contributions.

The zone shown in Fig. 1 contains forces labelledjasvherei =1..-4. These are
computed along the median mesh by the dot product of this tensor with the respe!
vectorsS, orfi = Q, - §. These forces now individually act upon their adjacent two poin
with opposite signs consistent with Newton’s third law. Thus, if we allocate the fgrce
to the sum of forces computed on point 1 with-asign, then it must also be added to the
sum of forces computed on point 2 with-asign. The total force on any given point is
just the sum of all forces allocated to it from all zones that lie adjacent. Therefore, poi
accumulates forcefg andf, from the given zone in Fig. 1, with the signs of these forces
determined by the conventions chosen. As will be seen, these signs can be found by s
logic. This completes the determination of the contribution to the momentum equatio
the forcesd; resulting from the tensdﬁz, which is specified inside the zone in some manne
The acceleration of the points can now be computed using these forces, and whatever
forces, are present.

An important result of the compatible formulation of the equations of hydrodynam
is that the work performed by the forcgscan be computed with respect to the zaria
which they originate simply as-f; - v, wherev, is the velocity of the poinp that the
forcef; acts upon [2]. Thus the rate of work done by the fdigeomputed with respect to
the part of the median me&h and alloted to point 1 with & sign and to point 2 with &
sign, is given by the termf, - (v; —Vv;) = —f1 - Avio. If we sum all four such contributions
along the median mesh the equation for the evolution of internal energy irezmeemmes

4

MZ% - Z —fi - Av;, (15)
i=1

whereM; is the zone mass argl s its specific internal energy. The indicated sum is cycli

so thatAv; =v; — vij;1, and when =4 we identify point +1— 1.

For the forced; originating from the tenso®, it can be shown that the RHS of Eq. (15)
reduces to the usual discrete control volume form of the heating@grim Vv, integrated
over the volume of the zone[2]. (The dummy indiciek, | are summed over either two
or three spatial dimensions.) Next, if we specify that the fdraiginates from a scalar
pressurep, that is constant in zonethen,f; = p,S. Since the pressure is positive it act:
to expand any given zone and the foffge= p,S; should be applied to point 1 with &
sign and to point 2 with a sign, given the direction of the median mesh ve&pthat is
indicated in Fig. 1. Thus from Eq. (15) the work term duétes — p,S; - (V1 — V2). When
these four zone contributions are summed they reduce to the discrete control volume
of —p,dV,, wheredV, is the rate of change of the volume of the zarj#9]. Thus we have
the important result that

4
dV, = Vo(V-v), = > S - Av. (16)
i=1
Normally, when the divergence of the velocity of a zo(e, v),, is positive the artificial
viscosity in that zone is turned off. Next, it is shown how to generalize this result to an ec
centered artificial viscosity, and to ensure that the work performed by it is always posit
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4.2. Dissipativity

Unlike the case in one dimension, in two or more dimensions it is necessary to cons
whether the form of the artificial viscosity is centered in a zone, or is along an edge as
initially envisioned by Schulz [3]. A zone-centered artificial viscosity is piecewise const
in a zone, while an edge-centered artificial viscosity is piecewise constant in each o
four subzonal triangles shown in Fig. 1, or in general, in every subtriangle along e\
coordinate edge of an associated zone that can contain any number of sides.

For the case of a zone-centered, scalar artificial viscagitfat enters the equations in
the same way as the pressure, the work done is simplg\,, whered, is the rate of
change of the volume of a zone that is given in discrete form by Eq. (16). §isqeositive
and nonzero only fodV; less than zero the work done is always positive as desired. \
now use this example to generalize the zone compression criteria to the individual edg
azone. SincéV -v); < 0 for a zone to be under compression, forittietriangular subzonal
edge of zone to be under compression we postulate the condition

S -Av, <O. (17)

The quantities5 - Av; are seen from Eq. (16) to be the individual edge contributions to t
divergence of the velocity defined in zone

As noted, the internal energy equation, Eq. (15), is valid for fokdbat are of completely
general origins. From this equation we see that if the frpeints antiparallel té\v;, then
this force does positive-definite work. This is a sufficient, though not necessary, condi
for dissipativity that our form of artificial viscous forces are constructed to obey. TI
observation itselfis enough to guarantee that our edge-centered viscousffoeceslways
dissipative. However, this condition will be seen to automatically incorporate Eq. (17) t
defines edge compression. Then it becomes simple to specify the correct signs to be
in allocating the viscous forces along each zone edge to the momentum equation of it:
respective points. This we do after a brief digression to consider the important subje
limiters, which is also necessary for the complete specification of our artificial viscosit)

4.3. Viscosity Limiters in Multi-dimensions

The velocity gradient limiter that was given in one dimension is now generalized to mu
dimensions. This is done with respect to the coordinate edges of zones of arbitrary sl
The edges to the left and right of a given edge are automatically defined for a logic
constructed grid. We now give a general prescription for the velocity derivative ratiod
r. of Eq. (13) in multi-dimensions. It is then shown how, in conjunction with Eq. (12) f
the limiter functiony; along theith edge, the artificial viscosity can be made to vanish fc
uniform compression, rigid rotation, and along a front of constant phase.

Consider an edge labelléaf a grid in two dimensions. From its two defining endpoint
we know Ax;, its vector length, andvv;, the difference in the velocity along this length;
A/ii and A/Vi are the unit vectors that point in the direction of the edge vector length &
the velocity difference, respectively. In general, the vecioxs and Av; are in different
directions. Thus, what is known along this edge is a particular slice of the tensor grac
of the velocity field,V;v;. We want to compare this slice of the velocity gradient to anoth
one that lies to the left and right of this edge; these edges are labeHddandi — 1,
respectively. However, we can only compare commensurate objects. To this end we
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the dot product of the velocity difference along edgeith that along edge + 1, and
divide this by the dot product of the vector length along edgsth that along edge + 1.
This operation projects the slice of the velocity gradient tensor known along eddeo
that known along edge Next, this entire quantity is divided by the square of the veloci
difference along edgeover the square of the vector length along edggnis latter step is
the exact analog of the first, only this time performed with respect to theigtggf. This
entire operation yields the quantity; . Performing the same procedure with respect to tf
right edgel — 1 yieldsr, ;. These are the left and right velocity derivative ratios needed f
the one-dimensional limiter given by Eq. (12). They are conveniently written as

AvVii1 - Avi []AV] r__AVi—l-AVi [AvVi|
Axii-Axi/ 1A% T T A - Axi /] 1AXi]

N = . (18)
Itis easily seen that these quantities reduce to those given by Eq. (13) in the one-dimen:
case. Note that as the velocity field goes to a constant the ratios given above be
indeterminate(0/0). Care must thus be taken in coding these objects (see the Appenc
The purpose of a viscosity limiter is to eliminate linear gradients of the velocity field.
constant velocity field is eliminated by the direct dependence of the artificial viscosity
Av; itself. The only other restriction on the above quantities is that the vé&tpnot be at
exactly a right angle with respect to eith&eg;_ 1 or Ax;_;.

For a logical grid such as that shown in Fig. 2 the concept of left and right with resf
to a given edge is taken care of trivially by the logical indexing. For an unstructured ¢
the definition of left and right is generalized by considering the nearest neighbors to
respective endpoints of a given edge. Thus, the nearest neighbors to the left endpoi
contribute candidate left edges and tihyss, except that for accuracy we require that the
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FIG. 2. Logicalk — | grid. Pointsa- - -d are on a surface of constant major radius and plHase- S, are
vectors that define the median mesh of the central zone.
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angle between these edges and the gitleedge be less than Q0To find ther, ; to use in
the limiter formula fory; we then simply choose the maximum value of these possibilitie
and likewise forr, ;.

Although uniform compression has been discussed in the one-dimensional case, ir
dimensions and in cylindrical coordinat@sz) the velocity field has the form= (—r, —2)
for this motion: for rigid rotatiorv = (z, —r). Thus it is seen that uniform compression ant
rigid rotation are conjugate motions. What we require is an artificial viscosity that vanis
when the velocity field is a linear function of the coordinates. We call this “self-simil
motion invariance.” Next, consider Fig. 2 where a grid is shown that could correspon
either cylindrical or Cartesian geometry with poits- - d that lie on a line of constant
major radius. For a velocity field that is directed radially inward our fourth criteria says t!
no artificial viscous forces should act between the paints d that lie on a common phase
front. That this should be true is obvious since along these points there are no discontini
in any variables. So along a phase front the artificial viscosity should dissipate no kin
energy; we refer to this property as “wave front invariance.” Next it is shown that our n
limiter prescription turns off the artificial viscosity for these conditions.

When the values of the velocity derivative ratios given by Eq. (18) are both greater tha
equal to unity, the limitey; = 1 and the artificial viscosity is turned off along tite edge.
From the previous discussion, a velocity field that is a linear function of the coordinates
Av; = —AX; and Av; = Ax_ ;, for uniform compression and rigid rotation, respectively
Then itis readily seen from Eq. (18) that =r,; = 1; this is true regardless of the spacinc
of the grid points.

Suppose there is convergent radial flow as indicated in Fig. 2. Then we want to show
the given artificial viscosity will turn off along a front of constant phase, such as that
which the pointsa- - - d lie. Along any edge aligned with a phase fraxw; is parallel to
AX;. Thus in computing the quantities given by Eq. (18) the angular factors that arise fi
terms such aaxj, ;- A/}i andAv; 1 - A/\\/i cancel when these terms are divided to obtgin
orrei. One is left with the ratios of positive quantitig€gyv/AX); ;1 to (Av/AX);, that are
all equal for any phase front. Thus, bath andr,; will be unity, resulting iny; =1, and
the viscosity on this edge will vanish. This occurs independently of the angular distribuf
of the points that lie on a phase front.

The complete limiter specification requires a brief discussion offgandr, ; are to be
set when one of them lies outside of the problem domain as will occur at every boundar
Fig. 2 is shown two types of reflecting boundaries. Alongafzis the reflecting boundary
is placed through the center of the zone. For the edgit is easy to show from Eq. (18)
thatr,; =r, ;. For a reflecting boundary along a coordinate edge, as shown fordRis
in Fig. 2, the magnitudes of the vectors divide out in Eq. (18) mpdilong the edgba
becomes simply the ratio of the dot products of the appropriate unit vectors. For an e
such agonext to a center of convergence,farnext to an outer boundary, we simply set the
unknown member equal to unity. Or alternatively, one can set it to the known member ¢
the reflective boundary case. We find that the results show little sensitivity to these cho

4.4. Edge-Centered Atrtificial Viscosity

We now have the pieces that are needed to construct an edge-centered artificial vist
that will satisfy all of our stated criteria. Aside from “dissipativity,” of the five criterie
that any proper artificial viscosity should conform to, “self-similar motion invariance” ai
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“wave front invariance” are taken care of by the limiter prescription computed with resp
to each edge. We are now concerned with the remaining two: “viscous force contint
and “Galilean invariance.”

The starting point for our edge-centered artificial viscosity is the scalar Kuropate
form, denoted ask,; along anith edge, as given by Eq. (8). After endowing this forn
with “directionality,” we will postulate that this tensor form, denotedngg is present in
theith triangular subzone associated with every edge of a givenzasidepicted in Fig. 1,
and gives rise to a viscous forehat is computed along the median mesifias,qzi.Z -S.
(Note that now the tensmTi,Z is subzonal.)

The problem of directionality is resolved by noting, from the arguments concern
inelastic collisions of masses that led to Eq. (5), that the viscous force should be in
Av; direction; in addition, as was noted from Eq. (15), this guarantees that the visc
force performs positive-definite work. Next we require that the artificial viscosity shot
be a symmetric tensor that is nonzero only when the edge in which it is defined is ul
compression, as stated by the inequality given in Eq. (17). Thus we conclude that the t¢
form along each edge should consist of the following pieces: first, the scalar ¢ggtor
and directionality specified by the projection operator that is defined by the direct proc
of the unit vector of the difference of the velocities along an edﬁ\e, with itself. This
is written asAv; Av;. (We always use dyadic notation to denote the direct product of t
unit vectors.) Collecting these pieces along with the edge limiter function, the tensor fi
for our edge-centered artificial viscosity along ed@d# zonez can be written as

— o~

Qz=Curi L= ¥DAViAV,  ifAVi-S, <0, elseq;, = 0. (19)

For the limitery; we still use Eq. (12), but the functions that enter it are the left and rig
velocity derivative ratiost|; andr, i, with respect to théth edge of a zone as given by
Eq. (18).

Evaluating the piece of the viscous force alongitthesegment of the median megh,
of a zonez due toq:i,Z we have

fi =0, Sz = Geuri (L — ¥)(AVi - S AV, (20)

if Av; S ; <0, otherwisd; =0, where the on/off condition is a consequence of Eq. (17
Note that because the on/off switch also appears as a factor in Eq. (20), thg figpends
continuously on this quantity and thus our fifth criterion “viscous force continuity”
satisfied. The second criterion “Galilean invariance” follows because the forp,0f,
that makes up the scalar kernel of our artificial viscosity, is an explicit functiotnpf
Now since the viscous force that acts between points 1 and 2 has dirépﬁon@l,
and sinceAv; = (v — V), from Eq. (15)f; must be applied to point 1 with-& sign and
to point 2 with a— sign in order to reduce the size ofv;, and thus be dissipative (see
also the discussion given in the Appendix). It is important to note that since the artifi
viscous forces originate fromy ,, that is not constant throughout a zone, that it is only b
means of the general form of Eq. (15) that the rate of work performed by these forces
be computed. Unlike in the case thﬁg was constant in a zone, no expression for th
undiscretized, intensive heating rate resulting from the teule'sj,oexists.

The edge-centered viscosity just given uses a switch that is not the actual rate of
pression of any volume but sums to the rate of change of the zone volume, as previc
noted. To see that this switch is actually superior to using, or equivalently(V - v),,
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FIG. 3. Square grid with velocity vectors after one timestep. Energy source in hatched zone 0. In sh:
triangular regions the edge artificial viscosity turns on.

of an entire zone as an on/off criteria, consider the situation shown in Fig. 3. This fig
shows an energy source in the central zone labelled 0, and the velocity field is shown
one timestep. At this timéV - v), is zero for the zones labelled 1. 4 and the viscosity is
thus zero in these zones using this criteria. However, the edge viscosity will be prese
the shaded subtriangular regions of these zones. The atrtificial viscosity should obvic
be on in all zones surrounding the energy source.

4.4.1. Comparison to the work of Schulit is interesting to contrast our edge-centere:
viscosity formulation to that of Schulz [3] who also listed “self-similar motion invariance
and “wave front invariance” as criteria necessary for a suitable artificial viscosity, and
formulation does satisfy these conditions. This was achieved by changing the form of
artificial viscosity from(Av;)? (Schulz utilized only the projection afv; along the edge
direction A/ii, and there was no linear term) to the product¥;| times|Avy;|, where
|Av, | is the magnitude of the second difference of the velocity field along the logi
line of theith edge. (The sign oAv; - Ax; was used as the compression switch, ang
as the force direction.) This results in a primitive form of limiter that turns the artifici
viscosity off along a phase front for radially symmetric flow when khiines shown in
Fig. 2 are spaced with equal angles. This also makes the artificial viscosity vanish
uniform compression and rigid rotation. By using the second difference of the velocity fi
it is no longer clear that this viscosity will give the same zone compression independel
shock strength. In addition, the use of second differences results in much increased
spatial frequency numerical noise relative to the limiter procedure, which only invol
ratios of first differences.

As pointed out by Schulz, his edge-centered viscosity is not symmetric. However, he
try a symmetric form based ofw; of an edge [18]. He noted that this did give a smoothe
hydrodynamics algorithm than his previous asymmetric form. However, he abandon
because he was also trying to control spurious grid distortion with his artificial viscosity
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well as to resolve shocks. We demostrate that spurious grid distortion is better contr
by other means [19].

4.5. Zone-Centered Artificial Viscosity

Since zone-centered artificial viscosity treatments have been used more widely in the
than edge-centered ones, we briefly consider this formulation. We consider first the z
centered, scalar form of the artificial viscosity formulated by Wilkins [7]. He uses t
generic formggen, given as Eq. (3) and splits the factan into two multiplicative factors
I* andV - v*. These new quantities are defined by first finding the shock direction acr
the zone. This is usually determined as the direction associated with the average pre
gradient of the zone points. This unit direction we labeEa$he next step is to project
the velocity at the zone points in this direction so thfat= (€ - v)¢; then,V - v* is simply
the divergence of this projected velocity field, which defines the rate of compression in
direction. (Wilkins refers to this quantity aks/dt [7]; it can be equivalently written as
€j : CiCj, Wheregjj is the symmetric strain rate tensor defined earlier in Eq. (9), see a
[20].) The length* is the effective length through the zone relative to the dire@javhich
can be determined in more than one manner [7, 21]. The quawtity* is also used as
the compression switch in this formulation, so this form of artificial viscosity turns off i
continuous manner.

The first difficulty with the Wilkins formulation is that it does not result in a viscou
force that vanishes on a front of constant phase, and thus does not take out all non-:
components as was intended. This is because itis still a scalar. A scalar viscosity acts nt
toalledges of the median mesh and thus produces forces and consequent dissipation b
points that are common to a single convergent phase front.

Since the unit vectat, defined in the zone center, is perpendicular to the velocity diffe
enceAv along a front of constant phase, this difficulty can be remedied by allowing 1
Wilkins viscosity, now Iabelleaqggn, to have the simple directional forqggnéé. Now the
force along an edge is given m;g"én(é - §)¢€, and the dissipation due to this force along
front of constant phase vanishes. A zone-centered viscosity of this form has been emp
by Burton [20].

Neither of the above formulations vanishes for uniform compression or rigid rotation.
remedy this difficulty one may choose the tensor artificial viscosity form given by Eq.
since, as noted previousl@;; has this property. However, this formulation will not yield
a viscosity that vanishes along a phase front. For these reasons we prefer the flexi
that is afforded by an edge-centered artificial viscosity, although, as has been disct
by Margolin [23], one can utilize an edge-centered formulation to derive a zone-centt
viscosity as a special case. Then this zone-centered viscosity will have the same prop
as the edge-centered one from which it was derived except that it does not respol
hourglass distortion.

5. NUMERICAL SENSITIVITIES

The edge-centered artificial viscosity presented here has been used as a partof an ad
Lagrangian hydrodynamics algorithm [2, 19, 22]. Thus a large variety of results has t
presented that illustrate its effectiveness within a wider context. For instance, because
are no zone specific factors, this viscosity is used without need of any modification
problems that preserve a special symmetry [22]. In all of these publications the linear
nonlinear viscosity coefficients; andcp, are set to unity and the limiters are on. In this
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section we exhibit the sensitivity of this artificial viscosity to its coefficients, and illustre
the effectiveness of the limiters, for shock wave and adiabatic flow. All problems are
with an ideal gasy =5/3, equation of state. All change in internal energy is compute
compatibly and thus total energy is conserved to roundoff error.

The first problem shows that our edge-centered artificial viscosity will turn off for
velocity field corresponding to uniform compression on a grid whose points are distribt
in a random manner. In Fig. 4(a) is shown an initially square, logical grid in cylindric
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FIG.4. (a)Randomized initial grid with initial velocity field= (—r, —2) in cylindrical coordinates. (b) Final
grid after 1000 fold volume compression.
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coordinates that has been randomized with a factor of 0.8 times the initial grid spac
The velocity field is initialized to minus the value of the grid point coordinates, and
shown as the vectors in this figure. The initial density is unity and the initial pressur
zero. Since the initial speed of sound is zero, the timestep of the calculation is constre
by requiring that no zone decrease in volume by more than one percent on a cycl
Fig. 4(b) the grid is shown after the coordinates have decreased by a factor of ten (e
450 cycles); the density has increased by just over a factor of 1000 and is flat, as it shot
for the specified initial velocity field. The artificial viscosity has remained zero to round-
error. This shows that for a velocity field that corresponds to self-similar motion the limi
formulation given here is independent of the grid topology. We note that when this artifi
viscosity is implemented in cylindrical geometry all hoop stress, or body force, terms
omitted since this is still considered to be a postulated force; these extra terms only pro
unwanted numerical complications.

Next we consider Noh’s spherical problem calculated in cylindrical geometry [5, 2
This problem has been used extensively to illustrate the difficulties of preserving sphe
symmetry in cylindrical geometry [22]. Initially the velocity is directed radially inward witl
amagnitude of-1.0, the density is unity, and the internal energy is zero. We show in Fig. 5
the solid curve our standard numerical result for the density as a function of major radit
the time of 0.6 using a 20line resolution, and with the viscosity coefficieis=c, = 1.
The dotted curve that lies just below it corresponds to the same parameters excep
¢, =C, = 2. The dash-dot curve that lies just above it, and shows some ringing behind
shock front, is the result far; = ¢, = 0.5. As seen, these curves are all close together a
agree well with the analytic result of a flat density equal to 64.0 inside the shock region
has a radius of 0.2 at time 0.6, except for the usual wall heating problem that is discuss
the end of this section. The limiters here are on; however, we have tried other forms in ¢
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FIG.5. Noh’s problem-density versus major radius at time 0.6: solid curve is the standarccresujt=1;
dotted curveg; = ¢, = 2; dash-dot curveg; =c¢, =0.5.
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of the limiter functiony;, as given by Eq. (12). In particular, all of the additional form:
given in the paper by Benson and Schoenfeld [5] result in oscillations behind the st
for this problem withc; = ¢, = 1. These limiter functions just have different dependencie
onr, andr,. Although they all turn the artificial viscosity off when the velocity field is
linear function of the spatial coordinates, they result in different values depending on
magnitude of the second spatial derivative of the velocity field. The criterion for the b
advection scheme is that the limiter allow the least amount of diffusion of the advec
guantity. For a viscosity limiter the criterion is that the limiter be a function that is
smooth as possible with respect to its argumentndr,. This criterion is necessary to
avoid spurious oscillation in the solution behind the shock front.

The Noh problem is also used to illustrate the substantial errors that can occur whe
artificial viscosity is allowed to act along a front of constant phase. (In all following resu
the viscosity coefficients; andc, are set to unity unless specified otherwise.) In Fig. 6 tr
solid curve is again our standard result for the density as a function of radius. The dc
line just below it is the result obtained when the limiters along the radially outkirgs
(cf., Fig. 2) are turned off; however, those alongltti@es that form constant phase surface
for this problem are still on. It is seen that this results in only a slightly more dissipat
answer. The three dashed curves in this figure give results with all limiters off, and for
indicated angular zoning. For the case of only thkdimes the angle separating them is
45° and the result is essentially unrecognizable. As seen, the error does decrease as
k-lines are added (at'Shere are 1%-lines); however, this is a physical problem that ha
no angular dependence. Note that because of the overheating the speed of the shock f
too fast for the cases indicated by the dashed lines. When the viscosity is turned off a
thel-lines our results show no sensitivity to angular zoning. The solid and dotted curve
this figure were from runs using thriedines. This difficulty is not specific to edge-centerec
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FIG. 6. Noh’s problem-density versus major radius at time 0.6: solid curve is standard result-all limiters
dotted curve, limiters off only with respectkelines; dashed curves, all limiters @#5°, 10°, 5°) angular zoning.
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viscosity and will occur with just as much virulence for zone-centered forms that act al
a front of constant phase.

The preceding example shows why artificial viscosity is qualitatively more difficult
formulate in two or more dimensions than in one dimension. Limiters on or off along
k-lines in the above example correspond to the differences one expects in one dimer
and these are seen to be relatively small. However, when artificial viscosity is present &
a phase front in two or more dimensions potentially huge errors can arise.

The Coggeshall adiabatic compression problem [25] tests the ability of an artificial
cosity to distinguish between adiabatic and shock compression in the case where th
no obvious one-dimensional symmetry. This two-dimensional problem involves adiab
compression only and has an analytical solution. The setup consists of a quarter of a s
of unit radius zoned with 11 equally spaced radtidihes (9 increments) and 101 equally
spaced laterdl-lines in a cylindrical(r, z) coordinate system. The initial velocity at the
grid points is given in terms of their coordinate valuesras(—r, —z/4), and the initial
density is unity. The specific internal energy of a zone is giveBa48)?, where the average
coordinatez of a quadrilateral zone is taken as the geometric mean of toerdinates of
the zone points. Reflective boundary conditions are applied todhdz axes. In this prob-
lem compression results with respect to the cylindricélcbordinate while net expansion
develops with respect to theg*coordinate. The grid is shown in Fig. 7(a) at the final time o
0.8 (valid in any consistent set of units). It is very regular with large compression occurt
near the origin. In this region where the analytic solution is valid (the region where
rarefaction wave that propagates inward from the outer boundary has not yet reache
density should be flat with a value of 37.4. In Fig. 7(b) is shown the density plotted &
function of distance from the origin for the zones along all keimes for two cases: the
solid lines are for the standard case with limiters on and viscosity coefficdgatslc, set
to unity; the dotted lines give this result for the same conditions except that the limiters
turned off. We see that inside a major radius of 0.2, the standard case with the limiter
gives results close to the correct value. With the limiters off the artificial viscosity tut
on substantially giving answers that vary greatly along diffekelimes and are very far
from the true solution. Figure 7(c) shows the same set of results except that now the
curves are the answer when the viscosity coefficientandc, are set to zero, and thus
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FIG. 7. (a) Adiabatic compression problem: grid at final time of 0.8. (b) Adiabatic compression proble
solid curves, density as a function of major radius alondcdithes for standard case at time 0.8; dotted curves
density as a function of major radius alonglalines with all limiters off at time 0.8. (c) Adiabatic compression
problem: solid curves, density as a function of major radius alonk-ties with viscosity offc, = ¢, =0.0 at
time 0.8; dotted curves, density as a function of major radius alonglaes with all limiters off at time 0.8.
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FIG. 7—Continued

corresponds exactly to the isentropic flow conditions of this problem. There is very li
difference between this case and the standard case of Fig. 7(b) where these parametel
set to unity and the limiters were on. Thus the limiters have been very effective in detec
adiabatic motion and turning off the artificial viscosity.

Finally, we present results of the Sedov blast wave [26] in a cylindrical coordinate sys
as an example of a diverging shock wave, both with and without the artificial viscos
limiters. Our initial setup consists of a square grid with an edge of length 1.125 divic
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FIG. 8. (a) Sedov blast wave: grid at time 1.0 for standard case. (b) Sedov blast wave: density contoul
at time 1.0 for standard case. (c) Sedov blast wave: grid at time 1.0 with all limiters off. (d) Sedov blast w
density contour plot at time 1.0 with all limiters off.

into 45x 45 square zones. Two of the edges of the square correspond toahe z

axes where reflective boundary conditions are enforced. The initial density is unity
the initial velocity is zero. The specific internal energy is zero except in the first zc
where it has a value of 5027.7. The analytic solution predicts that the shock should be
major radius of unity at a time equal to unity with a peak density of four. In Fig. 8(a) t
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grid is shown at this time for the standard case with the limiters turned on. Note that
shock wave has not quite reached 1.0 onzfaxis and is slightly beyond it with respect
to ther-axis. This occurs because the initial energy source was not spherical, but
instead cylindrical, owing to the coordinate system. The grid is smooth as is the con
plot of the density shown in Fig. 8(b). In Fig. 8(c) the grid is shown at the final tin
for an identical run except that the artificial viscosity limiters have been turned off. T
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grid shows some modest distortion along both thend z axes. This can also be seer
in the contour plot of the density given in Fig. 8(d). Therefore, this example shows t
while the limiters do give an improved result in that the density contours are smoother,
improvementis not nearly as great for expanding divergent shock flow as it is for conver
flow.

5.1. Inherent Difficulties

The artificial viscosity method strictly applies to steady-state shock wave situatic
where it potentially gives correct answers. However, if a shock wave intersects a r
wall, encounters a sharp change in density as occurs at an interface between materi
simply propagates across a grid whose initial spacing is variable, errors in the solution
occur. These errors are inherent in this method. They were first analyzed in one dimer
by Cameron [27] who suggested various adjustments in the coefficients of the artif
viscosity and in the initial grid spacing to compensate for them. Margaili. [28] also
analyzed these difficulties and proposed scaling the form of the gradient operator
to compute the force in order to correct them. However, all of these fixes were for
dimension and do not readily generalize to multi-dimensions. The error associated
nonuniform initial grid spacing in a single material is essentially a result of the fact that
artificial viscosity spreads a shock over a fixed number of cells giving a shock width 1
depends on grid spacing rather than on any physical scale [28]. The errors that occu
boundary are of a different character. These errors are like the wall heating error se
Noh'’s problem in Fig. 5. We give a further discussion of these since they have given ris
the idea that one should include in the equations an artificial heat flux that is directly lin
to the artificial viscosity [24].

In the Noh problem the heating due to the artificial viscosity is too high near the ori
and the density there is thus too low because the pressure adjusts to be nearly a co
in the shocked region. The difficulty in this case is that the artificial viscosity turns
sharply at the discontinuity in the velocity field that occurs initially at the origin. This is
contrastto a running shock wave where the viscosity turns on and off slowly, more like a
wavelength sine function, and less heating occurs in a given zone. Noh suggests the ad
of an artificial heat flux into the internal energy equation to remedy spurious wall hea
[24]. An artificial coefficient of thermal conductivity can be easily constructed based
the nonlinear part of the artificial viscosity. Fpe= p (Av;)?, and from simple dimensional
considerations, the associated coefficient of thermal conductivity=iso Av; - AXi|. Itis
not at all clear from first principles that this term can be justified. However, an artificial h
flux is easy to implement. One just uses the same limiters and on/off criteria that we
part of the artificial viscosity to control and limit thejust given. Then this coefficient is
inserted into a diffusion term that is now part of the equation for specific internal enel
Because of the factor afx; in «, this term obeys the same CFL stability condition as tt
explicit hydro scheme and thus causes no additional timestep limitations. Although the
heating error seen in Fig. 5 can be substantially eliminated with this simple procedure ¢
large enough constant in front of we find that for the same parameter settings this caus
significant spreading of contact discontinuities on other test problems. This spreadir
due mostly to numerical noise sineex | Av; | across a zone, which is zero for an idealize
contact discontinuity. However, for this reason we have not found the heuristic concej
an artificial heat flux to be acceptable.
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6. SUMMARY AND CONCLUSIONS

The issues of concern in the specification of a useful artificial viscosity for the simulat
of shock wave problems in more than one dimension have been investigated. Artif
viscosity was first discussed in one dimension in order to detail the origins of this term,
also, to set the framework for the development given in the multi-dimensional case. In
dimension the difficulty in constructing an artificial viscosity is to ensure that it vanisk
for uniform compression.

In the multi-dimensional case qualitatively different and more difficult issues are ct
fronted. First, one can consider more that one centering for the artificial viscous term: ir
zones like the pressure in a staggered grid formulation, or along the edges of a given :
Next there is the issue of “dissipativity” that by definition every form of artificial viscosit
must satisfy. A set of additional criteria that any reasonable artificial viscosity should o
was given. It was shown how these criteria could be satisfied with a properly formule
edge-centered artificial viscosity; this result constitutes the major achievement of this w

Central to this formulation was the generalization to multi-dimensions of Christianse
idea [4] of using one-dimensional advection limiters to control the magnitude of the artific
viscosity along any given edge of a zone. This was effected in a simple and straightfory
manner to obtain “intelligent” forms of artificial viscosity that are able to distinguish be
ween adiabatic and shock compression. Although our entire discussion was given in
dimensions, all arguments are applicable to any number of dimensions and for grids
are either logically rectangular or unstructured. The viscous forces are simply comp
with respect to a given edge of a zone on the appropriately defined median mesh
always yields the compression condition, and with limiter functions computed with resg
to appropriately defined left and right line segments.

Although numerical results using the edge-centered artificial viscosity specified he
have been given as part of a larger piece of work [2, 19, 22], numerical examples v
presented to show its sensitivities to coefficients and limiters for various flow regim
These results, in conjunction with the aforementioned larger set, are meant to show th:
artificial viscosity method need not be considered spurious or arbitrary in its implementa
or effectiveness. This suggests that this method is a viable alternative to Reimann solve
various types that have been utilized for the solution of high speed flow calculations.
artificial viscosity method affords great relative simplicity in multi-dimensions because th
is no need to spatially split the equations with respect to each dimension, and becaus
complexity of the algorithm does not fundamentally increase when increasingly complic:
physical effects are included.

APPENDIX: SUMMARY OF EDGE VISCOSITY

In order to facilitate coding, the artificial viscous force developed in Section 4 is writt
out in complete form with all relevant formulas collected together. This is done for the t
pointsb andc of Fig. 2 where we have assumed a staggered spatial placement of varia
with coordinates and velocity defined at points and all other variables defined inside zc
The viscous force that acts between these two points we laliehalserei = 1. (We retain
thei subscript to indicate that this could be any other edge.) This force is due to the shs
region with median mesh vect&; defined as the normal to, and with magnitude of, th
line joining the zone center to the edge midpoint. The velocity difference between tt
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points is defined aav;_; = vy, — V¢, and the unit vector in the direction of this difference
is Avij_;. Given these definitions and using Eq. (20) in conjunction with the Kuropater
form of the basic scalar artificial viscosity, Eq. (8), this force is written in full as

(y+1 +1)\?
fi:l = IOi C2 y 4 |AV|| + C% VT (AVi)Z + C%Cgl

x (L— i) (AV; - SPAV, i (Av; - Sp) <0, (21)
fi_i=0 if (Avj-S;) > 0, (22)

where we next define the remaining quantities in this expression. Then we comment on
this force is used in the equations for the evolution of momentum and internal energy.

The coefficientg; andc, that multiply the strengths of the linear and nonlinear viscosi
terms, respectively, are always setas- ¢, = 1. The ratio of specific heajsof a substance
lies in the range ¥ y < 3. The density;-; and the speed of sourd;_; are given by

20b0c
g = —rhre 23
P=L= o0 + po) (23)
Csji=1 = MIN(Csp; Cs.c), (24)

where the density and the sound speed at the pbiatelc are defined as area weightec
averages of their values with respect to the zones surrounding these points for the
where all of these zones are composed of the same material. If differing materials bc
either of these points then Egs. (23), (24) are ignored and we.sedndcg 1 to the values
of these quantities present in the zone that contains the v@cthliext the limiter function
Yi—1 is computed as

Vi = max[0, min(.5(r; +rri), 2r, 2, L)]. (25)
The arguments of this function are given by Eq. (18), repeated here as

(= Avii - Avi []AV] — Avi_1- Avi []Av]
o r

AXiH . &)\(i |Axi | ' T AXi_1- A/)\(i |Axi|

. (26)

The various factors, in addition thv; that has already been given, that appear in Eq. (2
are defined with reference to Fig. 2 A% =Xy — X¢, AXj11=Xc — Xd, AXj_1 =Xa — Xp,
AV 1=V — Vg, AVj_1=V4 — Vy, Wherex, or v, is the coordinate vector or velocity,
respectively, of any poirk. The unit vector directions associated with these differenc
are indicated by the carat superscript over the entire quantity. If the effective edge Col
condition(|Av; |/|Ax;|) At is less than the roundoff error levet 10714, thenr, ; andr,;
are set to unity. Recall that a boundary specification is needed fari ay r, ; that falls
outside of the given problem domain. In the case of reflective boundary conditions datz
known that allows this missing factor to be directly computed; for other boundary conditi
we either set it to unity or to the opposite known function,orr, ;. Also, if the underlying
grid does not have a logical structure then the definitions of what is left and right w
respect to a given edge must be defined as mentioned in Subsection 4.3 so that one |
what line segments to use in computing andr, ;.
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Next the forcefi_; must be assigned to the poirisandc in the discrete momentum
equation with proper signs. Each point obtains two contributions from each of its adja
zones, or, eight viscous force contributions to each point of a quadrilateral grid. Given
sign convention in Fig. 2 thatv;_; - S; < 0 corresponds to compression of the edge-‘¢”
with respect to the zone containigg, we have from Eq. (21) thdit_; ~ —AAvi —1. It now
follows thatfi_; must be assigned to poihtwith a+ sign and to point with a— sign in
order to resistAv;. (To see this set, =0, and letv, lie parallel toS;.) The same logic is
used to obtain the correct signs of these forces with respect to all edges of all zones.

Last, recall that in general for a staggered spatial grid, the rate of work done by any f
fi with respect to the zone in which it is computed due to its action on a given pdént
—f;i - v4. Thus the rate of work done by the forfie; with respect to the zone in which it
is defined is—fi_1 - (Vp — Vo) = —fi_1 - Av; ~ AAvi - Avj, and is seen to be positive-definite
as required. This is one term of the internal energy equation, previously given as Eq. |
This equation must be used to compute the work done by these forces with respect to
zone.

The complete edge-centered artificial viscosity is implemented by coding the ab
expressions along every edge of every zone of a grid that can be composed of any
of zone elements. We find it convenient to first compute all limiter functignspefore
computing the viscous forces with respect to the entire grid on a zone by zone basis.
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